设函数,其中(1)求函数的最小正周期和在上的单调递增区间;(2)当时,恒成立,求实数的取值范围.
从一箱产品中随机地抽取一件产品,设事件A为“抽到一等品”,事件B为“抽到二等品”,事件C为“抽到三等品”,且已知.求下列事件的概率:(1)事件D“抽到的是一等品或二等品”;(2)事件E“抽到的是二等品或三等品”.
假设人的某一特征(如眼睛大小)是由他的一对基因所决定的,以d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人是纯隐性,具有rd基因的人为混合性.纯显性与混合性的人都表露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性.问:(1)一个孩子有显性基因决定的特征的概率是多少?(2)两个孩子中至少有一个有显性基因决定的特征的概率是多少?
甲、乙两选手在同样条件下击中目标的概率分别为0.4与0.5(这里击中与否互不影响对方),则命题:“至少有一人击中目标的概率为P=0.4+0.5=0.9”正确吗?为什么?(这里只需要能回答为什么即可,而不需要指出概率的大小)
某班学生在一次数学考试中数学成绩的分布如下表:
求(1)分数在[100,110)中的概率;(2)分数不满110分的概率.(精确到0.01)
某射手在一次射击中,击中10环、9环、8环的概率分别是0.24、0.28、0.19,求这个射手在一次射击中:(1)击中10环或9环的概率;(2)小于8环的概率.