设函数,其中(1)求函数的最小正周期和在上的单调递增区间;(2)当时,恒成立,求实数的取值范围.
(本小题满分14分)已知各项均为正数的数列{an}前n项和为Sn,(p – 1)Sn = p2 – an,n ∈N*,p > 0且p≠1,数列{bn}满足bn = 2logpan.(Ⅰ)若p =,设数列的前n项和为Tn,求证:0 < Tn≤4;(Ⅱ)是否存在自然数M,使得当n > M时,an > 1恒成立?若存在,求出相应的M;若不存在,请说明理由.
(本小题满分14分)在中,角所对的边分别为,向量,且.(Ⅰ)求的值; (Ⅱ)若的面积为,求.
.已知等差数列的首项为,公差为b,等比数列的首项为b,公比为a(其中a,b均为正整数)。(I)若,求数列的通项公式;(II)对于(1)中的数列,对任意在之间插入个2,得到一个新的数列,试求满足等式的所有正整数m的值;(III)已知,若存在正整数m,n以及至少三个不同的b值使得等成立,求t的最小值,并求t最小时a,b的值。
已知函数(I)当a=2时,求函数的最大值和最小值;(II)若函数,求函数的单调递减区间;(III)当a=1时,求证:
如图为河岸一段的示意图,一游泳者站在河岸的A点处,欲前往河对岸的C点处。若河宽BC为100m,A、B相距100m,他希望尽快到达C,准备从A步行到E(E为河岸AB上的点),再从E游到C。已知此人步行速度为v,游泳速度为0.5v。(I)设,试将此人按上述路线从A到C所需时间T表示为的函数;并求自变量 取值范围;II)当为何值时,此人从A经E游到C所需时间T最小,其最小值是多少?