若展开式中第二、三、四项的二项式系数成等差数列.(1)求n的值及展开式中二项式系数最大的项.(2)此展开式中是否有常数项,为什么?
(本小题满分16分)已知为实数,函数,函数. (1)当时,令,求函数的极值; (2)当时,令,是否存在实数,使得对于函数定义域中的任意实数,均存在实数,有成立,若存在,求出实数的取值集合;若不存在,请说明理由.
(本小题满分16分) 在数列 中,已知 ,为常数. (1)证明: 成等差数列; (2)设 ,求数列 的前n项和 ; (3)当时,数列 中是否存在三项 成等比数列,且也成等比数列?若存在,求出的值;若不存在,说明理由.
【原创】已知椭圆,椭圆过点且与抛物线有一个公共的焦点. (1)求椭圆方程; (2)若点在椭圆上,点在椭圆上,且满足,则直线与直线的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
(本小题满分16分)如图,有一个长方形地块ABCD,边AB为2km, AD为4 km.,地块的一角是湿地(图中阴影部分),其边缘线AC是以直线AD为对称轴,以A为顶点的抛物线的一部分.现要铺设一条过边缘线AC上一点P的直线型隔离带EF,E,F分别在边AB,BC上(隔离带不能穿越湿地,且占地面积忽略不计).设点P到边AD的距离为t(单位:km),△BEF的面积为S(单位: ). (1)求S关于t的函数解析式,并指出该函数的定义域; (2)是否存在点P,使隔离出的△BEF面积S超过3 ?并说明理由.
在三棱锥P-ABC中,D为AB的中点。 (1)与BC平行的平面PDE交AC于点E,判断点E在AC上的位置并说明理由如下: (2)若PA=PB,且△PCD为锐角三角形,又平面PCD⊥平面ABC,求证:AB⊥PC。