已知函数f(x)=2sin xcos x+cos 2x(x∈R).(1)当x取什么值时,函数f(x)取得最大值,并求其最大值;(2)若θ为锐角,且f=,求tan θ的值.
假设每一架飞机引擎在飞行中故障率为1–p,且各引擎是否有故障是独立的,如有至少50%的引擎能正常运行,飞机就可成功飞行,则对于多大的p而言,4引擎飞机比2引擎飞机更为安全?
如图,三条直线a、b、c两两平行,直线a、b间的距离为p,直线b、c间的距离为,A、B为直线a上两定点,且|AB|=2p,MN是在直线b上滑动的长度为2p的线段。 (1)建立适当的平面直角坐标系,求△AMN的外心C的轨迹E;(2)接上问,当△AMN的外心C在E上什么位置时,d+|BC|最小,最小值是多少?(其中d是外心C到直线c的距离).
已知函数 f x = x 3 + 2 b x 2 + c x - 2 的图象在与 x 轴交点处的切线方程是 y = 5 x - 10 . (I)求函数 f x 的解析式; (II)设函数 g x = f x + 1 3 m x ,若 g x 的极值存在,求实数 m 的取值范围以及函数 g x 取得极值时对应的自变量 x 的值.
设A、B是双曲线x2–=1上的两点,点N(1,2)是线段AB的中点.(1)求直线AB的方程;(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
已知函数f(x)=a1x+a2x2+a3x3+…+anxn,n∈N*且a1、a2、a3、……、an构成一个数列{an},满足f(1)=n2. (1)求数列{an}的通项公式,并求;(2)证明0<f()<1.