(本小题满分14分)两个重要城市之间人员交流频繁,为了缓解交通压力,特修一条专用铁路,用一列火车作为交通车。已知该火车每日往返的次数y是车头每次拖挂车厢节数x的一次函数。若车头拖挂4节车厢,则每日能往返16次;若车头每次拖挂7节车厢,则每日能往返10次。(1)求此一次函数;(2)求这列火车每天运营的车厢总节数S关于x的函数;(3)若每节车厢能载旅客110人,求每次车头拖挂多少节车厢可使每天运送的旅客人数最多,并求出每天最多运送旅客人数。
(本小题满分12分) 已知函数的最小正周期为,最小值为,图象过点,(1)求的解析式;(2)求满足且的的集合.
(本小题满分12分) 已知函数, (1)当时,求的最大值和最小值 (2)若在上是单调函数,且,求的取值范围
(本小题满分10分) 如图:、是单位圆上的点,是圆与轴正半轴的交点,三角形为正三角形,且AB∥轴. (1)求的三个三角函数值; (2)求及.
设数列满足:是整数,且是关于x的方程的根. (1)若且n≥2时,求数列{an}的前100项和S100; (2)若且求数列的通项公式.
已知⊙和点. (Ⅰ)过点向⊙引切线,求直线的方程; (Ⅱ)求以点为圆心,且被直线截得的弦长为4的⊙的方程; (Ⅲ)设为(Ⅱ)中⊙上任一点,过点向⊙引切线,切点为. 试探究:平面内是否存在一定点,使得为定值?若存在,请举出一例,并指出相应的定值;若不存在,请说明理由.