如图,在平面直角坐标系中,抛物线经过A(﹣1,0),B(3,0),C(0,3)三点,其顶点为D.连接BD,点P是线段BD上一个动点(不与B,D重合),过点P作y轴的垂线,垂足为E,连接BE.(1)求抛物线的解析式,并写出顶点D的坐标;(2)如果点P的坐标为(x,y),△PBE的面积为S,求S与x的函数关系式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为P′,请求出点P′的坐标.
解不等式组;并写出它的非负整数解
先化简,再求值:()(2x-3),其中x=3。
计算:|-1|--(5-π)0+4cos45°.
如图,直线分别与x轴、y轴交于A、B两点;直线与AB交于点C,与过点A且平行于y轴的直线交于点D.点E从点A出发,以每秒1个单位的速度沿x轴向左运动.过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN.设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒). (1)求点C的坐标. (2)当0<t<5时,求S与t之间的函数关系式. (3)求(2)中S的最大值. (4)当t>0时,直接写出点(4,)在正方形PQMN内部时t的取值范围. 【参考公式:二次函数y=ax2+bx+c图象的顶点坐标为().】
某部队甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为y甲(棵),乙班植树的总量为y乙(棵),两班一起植树所用的时间(从甲班开始植树时计时)为x(时).y甲、y乙分别与x之间的部分函数图象如图所示. (1)当0≤x≤6时,分别求y甲、y乙与x之间的函数关系式. (2)如果甲、乙两班均保持前6个小时的工作效率,通过计算说明,当x=8时,甲、乙两班植树的总量之和能否超过260棵. (3)如果6个小时后,甲班保持前6个小时的工作效率,乙班通过增加人数,提高了工作效率,这样继续植树2小时,活动结束.当x=8时,两班之间植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵.