把下列各数的序号填入相应的横线上: ①-0.78,②5,③+,④8.47,⑤-10,⑥-,⑦0,⑧,⑨,⑩2.121121112… 整数有____________________________ ;(填序号) 分数有____________________________;(填序号) 有理数有___________________________;(填序号) 无理数有___________________________;(填序号)
如图是由几个小立方块搭成的几何体的俯视图,小正方形中的数字表示在该位置的小立方块的个数,请画出这个几何体的主视图和左视图.
解下列不等式组,并把解集在数轴上表示出来.
已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB.OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.求A、B、C三点的坐标;求此抛物线的表达式连接AC、BC,若点E是线段AB上的一个动点(与点A.点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由
如图是一种新型滑梯的示意图,其中线段PA是高度为6米的平台,滑道AB是函数的图象的一部分,滑道BCD是二次函数图象的一部分,两滑道的连接点B为抛物线的顶点,且点B到地面的距离为2米,当甲同学滑到点C时,距地面的距离为1米,距点B的水平距离CE也为1米.试求滑道BCD所在抛物线的解析式;试求甲同学从点A滑到地面上点D时,所经过的水平距离.
如图,AB是⊙O的直径,点P是⊙O上的动点(P与A,B不重合),连结AP,PB,过点O分别作OE⊥AP于E,OF⊥BP于F.若AB=12,当点P在⊙O上运动时,线段EF的长会不会改变.若会改变,请说明理由;若不会改变,请求出EF的长若AP=BP,求证四边形OEPF是正方形