(本小题满分12分)已知抛物线的焦点为,抛物线上存在一点到焦点的距离为,且点在圆上.(Ⅰ)求抛物线的方程;(Ⅱ)已知椭圆的一个焦点与抛物线的焦点重合,且离心率为.直线交椭圆于、两个不同的点,若原点在以线段为直径的圆的外部,求的取值范围.
已知函数, (1)当时,解不等式 (2)若函数有最大值,求实数的值.
已知数列是等差数列,且 (1)求数列的通项公式 (2)令,求数列前n项和.
已知点(1,)是函数且)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足-=+(). (1)求数列和的通项公式; (2)求数列{前项和为,问>的最小正整数是多少?
已知函数,且方程有两个实根为. (1)求函数的解析式 ; (2)设,解关于x的不等式:.
设数列的前项和为, (1)求,; (2)设,证明:数列是等比数列; (3)求数列的前项和为.