求过直线和的交点,且垂直于直线的直线方程.
如图,在三棱锥D-ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC的中点,F在棱AC上,且AF=3FC. (1)求证AC⊥平面DEF; (2)若M为BD的中点,问AC上是否存在一点N,使MN∥平面DEF?若存在,说明点N的位置;若不存在,试说明理由. (3)求平面ABD与平面DEF所成锐二面角的余弦值。
=1+ (n>1,n∈N),求证:()
在棱长为1的正方体中,分别是的中点,在棱上,且,H为的中点,应用空间向量方法求解下列问题. (1)求证:; (2)求EF与所成的角的余弦; (3)求FH的长.
.已知函数,当时,的极大值为7;当时,有极小值.求(1)的值 ;(2)函数的极小值.
已知直线经过椭圆的左顶点和上顶点椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线与直线分别交于两点,如图所示。 (1)求椭圆的方程;(2)求线段的长度的最小值; (3)当线段的长度的最小时,在椭圆上是否存在这样的点,使得的面积 为?若存在,确定点的个数,若不存在,请说明理由。