在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.
(本小题满分13分)如图,在四棱锥中,底面是等腰梯形, ∥,,,为的中点. (Ⅰ)求证:∥平面; (Ⅱ)若 (ⅰ)求证平面平面; (ⅱ)求直线与底面成角的正弦值.
设函数. (Ⅰ)证明:当时,; (Ⅱ)设当时,,求实数的取值范围.
已知抛物线的焦点为椭圆的右焦点,且椭圆的长轴长为,左右顶点分别为,.经过椭圆左焦点的直线与椭圆交于、两点. (Ⅰ)求椭圆标准方程; (Ⅱ)记与的面积分别为和,且,求直线的方程; (Ⅲ)若是椭圆上的两动点,且满足,动点满足(其中为坐标原点),求动点的轨迹方程.
已知正项数列,满足:对任意正整数,都有,,成等差数列,,,成等比数列,且,. (Ⅰ)求证:数列是等差数列; (Ⅱ)求数列,的通项公式; (Ⅲ)设=++…+,如果对任意的正整数,不等式恒成立,求实数的取值范围.
如图:已知矩形所在平面与底面垂直,直角梯形中//,,,. (Ⅰ)求证:; (Ⅱ)求二面角的正弦值; (Ⅲ)在边上找一点,使所成角的余弦值为,并求线段的长.