(本小题满分14分)有人玩掷正四面体骰子走跳棋的游戏,已知正四面体骰子四个面上分别印有,棋盘上标有第0站、第1站、第2站、…、第100站.一枚棋子开始在第0站,棋手每掷一次骰子,若掷出后骰子为面,棋子向前跳2站,若掷出后骰子为中的一面,则棋子向前跳1站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为().(Ⅰ)求;(Ⅱ)求证:;(Ⅲ)求玩该游戏获胜的概率.
如图,已知直线,为双曲线的渐近线,的 面积为,在双曲线上存在点为线段的一个三等分点,且双曲线的离心率为. (1)若、点的横坐标分别为,,则,之间满足怎样的关系?并证明你的结论; (2)求双曲线的方程; (3)设双曲线上的动点,两焦点、,若为钝角,求点横坐标的取值范围.
在五棱锥,,,,, (1)求证:平面; (2)求二面角的正弦值.
已知数列的首项,且. (1)求数列的通项公式; (2)设…,求….
已知命题:函数是上的减函数;命题:在 时,不等式恒成立,若是真命题,求实数的取值范围.
已知命题p:函数是R上的减函数;命题q:在时,不等式恒成立,若p∪q是真命题,求实数a的取值范围.