【问题探究】 (1)如图1,锐角△ABC中,分别以AB、AC为边向外作等腰△ABE和等腰△ACD,使AE=AB,AD=AC,∠BAE=∠CAD,连接BD,CE,试猜想BD与CE的大小关系,并说明理由. 【深入探究】 (2)如图2,四边形ABCD中,AB=7cm,BC=3cm,∠ABC=∠ACD=∠ADC=45º,求BD的长. (3)如图3,在(2)的条件下,当△ACD在线段AC的左侧时,求BD的长.
在△ABC中,a,b,c分别是内角A,B,C的对边,. (1)若,求的值; (2)若是边中点,且,求边的长.
已知函数f (t)=log2(2-t)+的定义域为D. (1)求D; (2)若函数g (x)=x2+2mx-m2在D上存在最小值2,求实数m的值.
已知向量m=(sinωx,cosωx),n=(cosωx,cosωx),其中ω>0,函数2m·n-1的最小正周期为π. (1)求ω的值; (2)求函数在[,]上的最大值.
(本小题满分12分)已知函数 (1)若函数无零点,求实数的取值范围; (2)若存在两个实数且,满足,,求证.
(本题小满分12分)已知函数 (1)讨论函数的单调区间; (2)设,当 时,若对任意的,(为自然对数的底数)都有,求实数的取值范围.