某专卖店计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(10<x1≤15,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(5≤x2<10,x2为整数).该专卖店分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.问:怎么采购才能使总利润最大?并求最大利润.
(本小题满分12分)已知函数 (Ⅰ)求函数的对称中心; (Ⅱ)已知△ABC内角的对边分别为,且,,,求
(本小题满分14分)设函数. (1)若函数在上为减函数,求实数的最小值; (2)若存在,使成立,求实数的取值范围.
(本小题满分13分)已知椭圆()的左、右顶点分别为,,且,为椭圆上异于,的点,和的斜率之积为. (Ⅰ)求椭圆的标准方程; (Ⅱ)设为椭圆中心,,是椭圆上异于顶点的两个动点,求面积的最大值.
(本小题满分12分)已知单调递增的等比数列满足:,且是的等差中项. (Ⅰ)求数列的通项公式; (Ⅱ)若,,求成立的正整数的最小值.
如图,在三棱锥中,平面平面,于点,且,, (1)求证: (2) (3)若,,求三棱锥的体积.