(本题9分)如图,在平面直角坐标系中,以点M(0,3)为圆心、5为半径的圆与x轴交于点A、B(点A在点B的左侧),与y轴交于点C、D(点C在点D的上方),经过B、C两点的抛物线的顶点E在第二象限.(1)求点A、B两点的坐标.(2)当抛物线的对称轴与⊙M相切时, 求此时抛物线的解析式.(3)连结AE、AC、CE,若.①求点E坐标;②在直线BC上是否存在点P,使得以点B、M、P为顶点的三角形和△ACE相似?若存在,直接写出点P的坐标;若不存在,请说明理由.
(本小题满分10分)设,若方程有两个均小于2的不同的实数根,则此时关于的不等式是否对一切实数都成立?并说明理由。
(本小题满分12分)已知:函数是上的增函数,且过和两点,集合,关于的不等式的解集为. (1)求集合A; (2)求使成立的实数的取值范围.
(本小题满分12分)某校从参加高一年级期末考试的学生中抽出60名学生,将其某科成绩(是不小于40不大于100的整数)分成六段,…后画出如下频率分布直方图,根据图形中所给的信息,回答以下问题: (1)求第四小组的频率. (2)求样本的众数. (3) 观察频率分布直方图图形的信息,估计这次考试的及格率(60分及以上为及格)和平均分.
(本小题满分12分) 已知数列为等差数列,且,. (1) 求数列的通项公式; (2) 令,求证:数列是等比数列. (3)令,求数列的前项和.
(本题满分10分)选修4—5:不等式选讲 若关于x的不等式恒成立,求a的取值范围.