(本题9分)如图,在平面直角坐标系中,以点M(0,3)为圆心、5为半径的圆与x轴交于点A、B(点A在点B的左侧),与y轴交于点C、D(点C在点D的上方),经过B、C两点的抛物线的顶点E在第二象限.(1)求点A、B两点的坐标.(2)当抛物线的对称轴与⊙M相切时, 求此时抛物线的解析式.(3)连结AE、AC、CE,若.①求点E坐标;②在直线BC上是否存在点P,使得以点B、M、P为顶点的三角形和△ACE相似?若存在,直接写出点P的坐标;若不存在,请说明理由.
(本小题满分12分)设集合A={x2 , 2x-1, -4} ,B={x-5, 1-x,9}. 若求.
已知数列的首项,,….(1)证明:数列是等比数列; (2)数列的前项和.
某企业在第1年初购买一台价值为120万元的设备M,M的价值在使用过程中逐年减少,从第2年到第6年,每年初M的价值比上年初减少10万元;从第7年开始,每年初M的价值为上年初的75%.(1)求第n年初M的价值的表达式;(2)设若大于80万元,则M继续使用,否则须在第n年初对M更新,证明:第6年初仍可对M继续使用.
已知数列前项和(1)求数列的通项公式;(2)令,求证:数列{}的前n项和.
已知数列的首项,通项(为常数),且成等差数列.(1)求的值;(2)数列的前项的和.