列方程或方程组解应用题:为响应市政府“绿色出行”的号召,小张上班由自驾车改为骑公共自行车.已知小张家距上班地点10千米.他用骑公共自行车的方式平均每小时行驶的路程比他用自驾车的方式平均每小时行驶的路程少45千米,他从家出发到上班地点,骑公共自行车方式所用的时间是自驾车方式所用的时间的4倍.小张用骑公共自行车方式上班平均每小时行驶多少千米?
(本小题满分12分)已知函数是定义在上的增函数,对于任意的,都有,且满足. (1)求的值; (2)求满足的的取值范围.
(本小题满分12分)设集合, (1)若,求; (2)若,求实数的取值范围.
已知数列是等差数列,其前n项和为Sn,若,. (1)求; (2)若数列{Mn}满足条件: ,当时,-,其中数列单调递增,且,. ①试找出一组,,使得; ②证明:对于数列,一定存在数列,使得数列中的各数均为一个整数的平方.
如图,在平面直角坐标系中,已知椭圆:,设是椭圆上的任一点,从原点向圆:作两条切线,分别交椭圆于点,. (1)若直线,互相垂直,求圆的方程; (2)若直线,的斜率存在,并记为,,求证:; (3)试问是否为定值?若是,求出该值;若不是,说明理由.
已知函数(其中是自然对数的底数),,. (1)记函数,且,求的单调增区间; (2)若对任意,,均有成立,求实数的取值范围.