(满分10分)复数(),(Ⅰ)若,求;(Ⅱ)若在复平面内复数对应的点在第一象限,求的范围.
已知,O是原点,点P(x, y)的坐标满足(1)求的最大值.;(2)求的取值范围.
如图所示,已知直线与轴的正半轴分别交于两点,直线和分别交于且平分△的面积,求的最小值.
如图所示,F1、F2分别为椭圆C:的左、右两个焦点,A、B为两个顶点,已知椭圆C上的点到F1、F2两点的距离之和为4.(Ⅰ)求椭圆C的方程和焦点坐标;(Ⅱ)过椭圆C的焦点F2作AB的平行线交椭圆于P、Q两点,求△F1PQ的面积.
如图,在四棱锥P—ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,AB=,BC=1,PA=2,E为PD的中点.(Ⅰ)求直线AC与PB所成角的余弦值;(Ⅱ)在侧面PAB内找一点N,使NE⊥面PAC,并求出N点到AB和AP的距离.
如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.(Ⅰ)求证:BD⊥平面PAC;(Ⅱ)求二面角P—CD—B的大小;(Ⅲ)求点C到平面PBD的距离.