(本小题满分13分)已知数列{an}的前n项和为Sn,又a1=1,a2=2,且满足Sn+1=kSn+1,(1)求k的值及{an}的通项公式;(2)若,求证:.
如图,在棱长为的正方体中,点是棱的中点,点在棱上,且满足. (1)求证:; (2)在棱上确定一点,使、、、四点共面,并求此时的长; (3)求几何体的体积.
已知函数的图象经过点. (1)求实数的值; (2)求函数的最小正周期与单调递增区间.
已知某种同型号的瓶饮料中有瓶已过了保质期. (1)从瓶饮料中任意抽取瓶,求抽到没过保质期的饮料的概率; (2)从瓶饮料中随机抽取瓶,求抽到已过保质期的饮料的概率.
已知函数(其中为自然对数的底数). (1)求函数的单调区间; (2)定义:若函数在区间上的取值范围为,则称区间为函数的“域同区间”.试问函数在上是否存在“域同区间”?若存在,求出所有符合条件的“域同区间”;若不存在,请说明理由.
已知双曲线的中心为原点,左、右焦点分别为、,离心率为,点是直线上任意一点,点在双曲线上,且满足. (1)求实数的值; (2)证明:直线与直线的斜率之积是定值; (3)若点的纵坐标为,过点作动直线与双曲线右支交于不同的两点、,在线段上去异于点、的点,满足,证明点恒在一条定直线上.