(本小题满分10分)设△ABC的内角A、B、C的对边长分别为a、b、c,设S为△ABC的面积,满足.(Ⅰ)求B;(Ⅱ)若,设,,求函数的解析式和最大值.
在△ABC中,已知A=,.(Ⅰ)求cosC的值;(Ⅱ)若BC=2,D为AB的中点,求CD的长.
已知全集U=R,非空集合<,<.(1)当时,求;(2)命题,命题,若q是p的必要条件,求实数的取值范围.
已知圆心为的圆方程为,点是直线上的一动点,过点作圆的切线,切点为.(1)当切线的长度为时,求点的坐标;(2)若的外接圆为圆,试问:当在直线上运动时,圆是否过定点?若存在,求出所有的定点的坐标;若不存在,说明理由.(3)求线段长度的最小值.
如图,在△中,,,点在上,交于,交于.沿将△翻折成△,使平面平面;沿将△翻折成△,使平面平面.(1)求证:平面.(2)设,当为何值时,二面角的大小为?
如图,四棱锥中,底面是平行四边形,平面,垂足为,在线段上,,,,是的中点,四面体的体积为.(1)求异面直线与所成角的余弦值;(2)棱上是否存在点,使,若存在,求的值,若不存在,请说明理由.