{an}为等差数列,公差d≠0,an≠0,(n∈N*),且akx2+2ak+1x+ak+2=0(k∈N*)(1)求证:当k取不同自然数时,此方程有公共根;(2)若方程不同的根依次为x1,x2,…,xn,…,求证:数列为等差数列.
已知函数:. (1)证明:++2=0对定义域内的所有都成立; (2)当的定义域为[+,+1]时,求证:的值域为[-3,-2]; (3)若,函数=x2+|(x-) | ,求的最小值
某工厂生产某种产品,已知该产品的月生产量(吨)与每吨产品的价格p(元/吨)之间的关系式为:p=24200-0.2x2,且生产x吨的成本为(元).问该厂每月生产多少吨产品才能使利润达到最大?最大利润是多少?(注:利润=收入─成本)
设函数。 (1)求函数的最小正周期和单调递减区间; (2)若,是否存在实数m,使函数的值域恰为?若存在,请求出m的 取值;若不存在,请说明理由。
已知不等式的解集为A,函数的定义域为B. (Ⅰ)若,求的取值范围; (Ⅱ)证明:函数的图象关于原点对称。
(本题13分) 已知f(x)=lnx+x2-bx. (1)若函数f(x)在其定义域内是增函数,求b的取值范围; (2)当b=-1时,设g(x)=f(x)-2x2,求证函数g(x)只有一个零点.