(本小题满分7分)在数字化校园建设工程中,某学校计划购进一批笔记本电脑和台式机,经过市场调研得知如下信息:购买1台笔记本和2台台式机需付费1.4万元;购买2台笔记本和1台台式机需付费1.3万元.(1)求购买一台笔记本和一台台式机各需多少钱(单位:万元)?(2)根据学校实际情况,计划购进笔记本和台式机共20台.其中,台式机至少10台,笔记本至少8台.请你通过计算求出有几种购买方案,说明哪种费用最低.
先化简,再选取一个使原式有意义的的值代入求值.
计算:-sin30°解方程:
如图9, 已知抛物线与轴交于A (-4,0) 和B(1,0)两点,与轴交于C(0,-2)点.求此抛物线的解析式;设G是线段BC上的动点,作GH//AC交AB于H,连接CF,当△BGH的面积是△CGH面积的3倍时,求H点的坐标;若M为抛物线上A、C两点间的一个动点,过M作轴的平行线,交AC于N,当M点运动到什么位置时,线段MN的值最大,并求此时M点的坐标
阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如一样的式子,其实我们还可以将其进一步化简:;(Ⅰ)(Ⅱ).(Ⅲ) 以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:
.(Ⅳ)
已知:如图,⊙O的直径AB与弦CD相交于E,弧BC=弧BD,CD∥BF,BF交AD的延长线于F。求证:.BF是⊙O的切线连结BC,若⊙O的半径为4,cos∠BCD=,求线段AD、CD的长.