【2015高考重庆,理17】 端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望
已知函数,数列满足,(1)求数列的通项公式;(2)若数列满足,求
在一次语文测试中,有一道把我国近期新书:《声涯》、《关于上班这件事》、《长尾理论》、《游园惊梦:昆曲艺术审美之旅》与它们的作者连线题,已知连对一个得3分,连错一个不得分,一位同学该题得分. (1)求该同学得分不少于6分的概率; (2)求的分布列及数学期望.
已知.(1)求函数的单调增区间;(2)若的值
已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴距离的差都是1.(1)求曲线C的方程;(2)是否存在正数m, 对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有 若存在,求出m的取值范围;若不存在,请说明理由。
已知双曲线的离心率为2,焦点到渐近线的距离为,点P的坐标为(0,-2),过P的直线l与双曲线C交于不同两点M、N. (1)求双曲线C的方程;(2)设(O为坐标原点),求t的取值范围