【2015高考天津,理16】(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(Ⅰ)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A发生的概率;(Ⅱ)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.
已知函数f(x)=(1+x)2-4a lnx(a∈N﹡).(Ⅰ)若函数f(x)在(1,+∞)上是增函数,求a的值;(Ⅱ)在(Ⅰ)的条件下,若关于x的方程f(x)=x2-x+b在区间[1,e]上恰有一个实根,求实数b的取值范围.
已知点列在直线上,P1为直线轴的交点,等差数列的公差为1 。(1)求、的通项公式;;(2)若,试证数列为等比数列,并求的通项公式。(3).
已知函数f(x)=ln(1+x)-.(1)求f(x)的极小值; (2)若a、b>0,求证:lna-lnb≥1-.
已知甲盒内有大小相同的1个红球和3个黑球, 乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;(Ⅲ)设为取出的4个球中红球的个数,求的分布列和数学期望.
已知 是定义在 上的增函数,且对任意的都满足 .(Ⅰ)求的值; (Ⅱ)若,证明;(Ⅲ)若,解不等式 .