【2015高考湖南,理17】设的内角,,的对边分别为,,,,且为钝角.(1)证明:;(2)求的取值范围.
(本小题满分12分)已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线,使得和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2. (1)求双曲线G的渐近线的方程; (2)求双曲线G的方程;(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当的面积最大时点P的坐标.
. (本小题满分12分)如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.(1)求证:BD⊥平面PAC; (2)若PA=AB,求PB与AC所成角的余弦值;(3)当平面PBC与平面PDC垂直时,求PA的长.
(本小题满分12分)椭圆的一个焦点与抛物线的焦点重合,且截抛物线的准线所得弦长为,倾斜角为的直线过点. (1)求该椭圆的方程;(2)设椭圆的另一个焦点为,问抛物线上是否存在一点,使得与关于直线对称,若存在,求出点的坐标,若不存在,说明理由.
(本小题满分12分)已知M(-3,0)﹑N(3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m(m-1,m0).(1)求P点的轨迹方程并讨论轨迹是什么曲线?(2)若, P点的轨迹为曲线C,过点Q(2,0)斜率为的直线与曲线C交于不同的两点A﹑B,AB中点为R,直线OR(O为坐标原点)的斜率为,求证为定值;(3)在(2)的条件下,设,且,求在y轴上的截距的变化范围.
.(本小题满分12分)如图5所示的多面体是由底面为的长方体被截面所截 而得到的,其中.(1)求;(2)求点到平面的距离.