【2015高考福建,理19】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移个单位长度.(Ⅰ)求函数的解析式,并求其图像的对称轴方程;(Ⅱ)已知关于的方程在内有两个不同的解.(1)求实数m的取值范围;(2)证明:
已知曲线上任一点到的距离减去它到轴的距离的差是,求这曲线的方程.
两条直线,分别过点,(为常数),且分别绕,旋转,它们分别交轴于,(,为参数),若,求两直线交点的轨迹方程.
的半径为的定圆的两互相垂直的直径,作动弦交于,引,且交于,求点的轨迹方程.
如图,某客运公司规定旅客可随身携带一定重量的行李,如果超过规定,则需要购买行李票,行李票费用(元)与行李重量的关系用直线的方程表示,试求:(1)直线的方程. (2)旅客最多可免费携带多少行李?
已知矩形中,,,中心在第一象限内,且与轴的距离为一个单位,动点沿矩形一边运动,求的取值范围.