已知f(x)是定义在集合M上的函数.若区间D⊆M,且对任意x0∈D,均有f(x0)∈D,则称函数f(x)在区间D上封闭.(1)判断f(x)=x-1在区间[-2,1]上是否封闭,并说明理由;(2)若函数g(x)=在区间[3,10]上封闭,求实数a的取值范围;(3)若函数h(x)=x3-3x在区间[a,b](a,b∈Z,且a≠b)上封闭,求a,b的值.
(本小题满分12分) 如图,在平面直角坐标系xOy中,平行于x轴且过点A(3,2)的入射光线 l1 被直线l:y=x反射.反射光线l2交y轴于B点,圆C过点A且与l1, l2都相切. (1)求l2所在直线的方程和圆C的方程; (2)设分别是直线l和圆C上的动点,求的最小值及此时点的坐标.
(本小题满分12分) 设圆的切线与两坐标轴交于点. (1)证明:; (2)若求△AOB的面积的最小值.
(本小题满分12分) 己知圆C: (x – 2 )2 + y 2 =" 9," 直线l:x + y = 0. (1) 求与圆C相切, 且与直线l平行的直线m的方程; (2) 若直线n与圆C有公共点,且与直线l垂直,求直线n在y轴上的截距b的取值范围;
(本小题满分12分) 命题p:对任意实数都有恒成立;命题q:关于的方程有实数根.若“p或q”为真命题,“p且q”为假命题,求实数的取值范围。
(本小题满分10分) 如图,在棱长为3的正方体中,. ⑴求两条异面直线与所成角的余弦值; ⑵求平面与平面所成的锐二面角的余弦值.