已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=-1,与x轴交于A,B两点,与y轴交于点C,其中A(-3,0),C(0,-2).(1)求这条抛物线的函数表达式; (2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标; (3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.
如图,在平面直角坐标系中,四边形 OABC 的顶点 O 是坐标原点,点 A 的坐标为 ( 6 , 0 ) ,点 B 的坐标为 ( 0 , 8 ) ,点 C 的坐标为 ( − 2 5 , 4 ) ,点 M , N 分别为四边形 OABC 边上的动点,动点 M 从点 O 开始,以每秒1个单位长度的速度沿 O → A → B 路线向终点 B 匀速运动,动点 N 从 O 点开始,以每秒两个单位长度的速度沿 O → C → B → A 路线向终点 A 匀速运动,点 M , N 同时从 O 点出发,当其中一点到达终点后,另一点也随之停止运动,设动点运动的时间 t 秒 ( t > 0 ) , ΔOMN 的面积为 S .
(1)填空: AB 的长是 , BC 的长是 ;
(2)当 t = 3 时,求 S 的值;
(3)当 3 < t < 6 时,设点 N 的纵坐标为 y ,求 y 与 t 的函数关系式;
(4)若 S = 48 5 ,请直接写出此时 t 的值.
如图,在 ΔABC 中,以 BC 为直径的 ⊙ O 交 AC 于点 E ,过点 E 作 EF ⊥ AB 于点 F ,延长 EF 交 CB 的延长线于点 G ,且 ∠ ABG = 2 ∠ C .
(1)求证: EF 是 ⊙ O 的切线;
(2)若 sin ∠ EGC = 3 5 , ⊙ O 的半径是3,求 AF 的长.
小明要代表班级参加学校举办的消防知识竞赛,共有25道题,规定答对一道题得6分,答错或不答一道题扣2分,只有得分超过90分才能获得奖品,问小明至少答对多少道题才能获得奖品?
某校为了开展读书月活动,对学生最喜欢的图书种类进行了一次抽样调查,所有图书分成四类:艺术、文学、科普、其他.随机调查了该校 m 名学生(每名学生必选且只能选择一类图书),并将调查结果制成如下两幅不完整的统计图:
根据统计图提供的信息,解答下列问题:
(1) m = , n = ;
(2)扇形统计图中,“艺术”所对应的扇形的圆心角度数是 度;
(3)请根据以上信息直接在答题卡中补全条形统计图;
(4)根据抽样调查的结果,请你估计该校600名学生中有多少学生最喜欢科普类图书.
把3,5,6三个数字分别写在三张完全相同的不透明卡片的正面上,把这三张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记录下卡片上的数字,放回后洗匀,再从中抽取一张卡片,记录下数字,请用列表法或树状图法求两次抽取的卡片上的数字都是奇数的概率.