如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别为,,过原点且不与轴重合的直线与,的四个交点按纵坐标从大到小依次为、、、.记,和的面积分别为和.(1)当直线与轴重合时,若,求的值;;(2)设直线,若,证明:是线段的四等分点(3)当变化时,是否存在与坐标轴不重合的直线,使得?并说明理由.
已知向量,且,A为锐角,求: (1)角A的大小; (2)求函数的单调递增区间和值域.
已知函数和的定义域分别是集合A、B, (1)求集合A,B; (2)求集合,.
如图,是△的重心,、分别是边、上的动点,且、、三点共线. (1)设,将用、、表示; (2)设,,证明:是定值; (3)记△与△的面积分别为、.求的取值范围. (提示:
如图,某小区准备绿化一块直径为的半圆形空地,外的地方种草,的内接正方形为一水池,其余地方种花.若,设的面积为,正方形的面积为,将比值称为“规划合理度”. (1)试用,表示和. (2)当为定值,变化时,求“规划合理度”取得最小值时的角的大小.
如图所示,圆柱的高为2,底面半径为,AE、DF是圆柱的两条母线,过作圆柱的截面交下底面于. (1)求证:; (2)若四边形ABCD是正方形,求证; (3)在(2)的条件下,求二面角A-BC-E的平面角的一个三角函数值。