如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别为,,过原点且不与轴重合的直线与,的四个交点按纵坐标从大到小依次为、、、.记,和的面积分别为和.(1)当直线与轴重合时,若,求的值;;(2)设直线,若,证明:是线段的四等分点(3)当变化时,是否存在与坐标轴不重合的直线,使得?并说明理由.
在△中,内角、、所对的边分别是、、,已知,,(1)若,求、的值;(2)若角为锐角,设,△的周长为,试求函数的最大值.
设函数且是奇函数,(1)求的值;(2)若,试求不等式的解集;(3)若,且在上的最小值为,求的值.
已知复数,, (1)若,求的值;(2)若对应的点在直线上,且,求的值;(3)求的最大值和最小值.
在平面直角坐标系中,点在角的终边上,点在角的终边上,且.(1)求;(2)求的值.
设,点P(,0)是函数的图象的一个公共点,两函数的图象在点P处有相同的切线.(Ⅰ)用表示a,b,c;