如图,已知椭圆与的中心在坐标原点,长轴均为且在轴上,短轴长分别为,,过原点且不与轴重合的直线与,的四个交点按纵坐标从大到小依次为、、、.记,和的面积分别为和.(1)当直线与轴重合时,若,求的值;;(2)设直线,若,证明:是线段的四等分点(3)当变化时,是否存在与坐标轴不重合的直线,使得?并说明理由.
已知数列满足,.令. (1)求证:数列为等差数列; (2)求证:.
已知,解不等式.
已知的为锐角,且三边成等比数列,,. (1)求; (2)求的面积.
定义域为的函数满足:对任意的有,且当时,有,. (1)证明:在R上恒成立; (2)证明:在上是减函数; (3)若时,不等式恒成立,求实数的取值范围.
已知二次函数满足且. (1)求的解析式; (2)设,求的最大值.