(本小题满分14分)某地拟建一座长为米的大桥,假设桥墩等距离分布,经设计部门测算,两端桥墩、造价总共为万元,当相邻两个桥墩的距离为米时(其中),中间每个桥墩的平均造价为万元,桥面每1米长的平均造价为万元.(1)试将桥的总造价表示为的函数;(2)为使桥的总造价最低,试问这座大桥中间(两端桥墩、除外)应建多少个桥墩?
已知函数,,求:(1)求的取值范围;(2)求的值域.
某商店购进一批单价为20元的日用品,如果以单价30元销售,那么可卖出400件,如果每提高单价1元,那么销售量Q(件)会减少20,设每件商品售价为(元);(1)请将销售量Q(件)表示成关于每件商品售价(元)的函数;(2)请问当售价(元)为多少,才能使这批商品的总利润(元)最大?
化简求值: (1); (2).
已知集合,求: (1); (2).
已知定义在区间上的函数,其中常数.(1)若函数分别在区间上单调,试求的取值范围;(2)当时,方程有四个不相等的实根.①证明:;②是否存在实数,使得函数在区间单调,且的取值范围为,若存在,求出的取值范围;若不存在,请说明理由.