已知椭圆(),点、分别是椭圆的左焦点、左顶点,过点的直线(不与轴重合)交于两点.(1)求椭圆的标准方程; (2)若,求△的面积;(3)是否存在直线,使得点在以线段为直径的圆上,若存在,求出直线的方程;若不存在,说明理由.
已知.(Ⅰ)求函数的单调递增区间;(Ⅱ)设,且,求.
已知函数,其中是的导函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)若在上恒成立,求实数的取值范围.
已知抛物线的顶点为坐标原点,焦点为,直线与抛物线相交于两点,且线段的中点为.(Ⅰ)求抛物线的和直线的方程;(Ⅱ)若过且互相垂直的直线分别与抛物线交于,,,,求四边形面积的最小值.
如图1,在中,,分别是上的点,且.将沿折起到的位置,使,如图2.(Ⅰ)是的中点,求与平面所成角的大小;(Ⅱ)求二面角的正切值.
已知数列满足且.(Ⅰ)求的值;(Ⅱ)是否存在一个实数,使得且为等差数列?若存在,求出的值;如不存在,请说明理由;(Ⅲ)求数列的前项和.