如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.(1)判断DF与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).
解方程: (1); (2) ; (3); (4).
已知:点A(-3,0),点B(1,3),点C(1,0).(1)请在x轴上找一点D,使得△BDA与△BAC相似(不包含全等),并求出点D的坐标;(2)在(1)的条件下,如果P、Q分别是AB、AD上的动点,连结PQ,设AP=DQ=m,问:是否存在这样的m,使得△APQ与△BDA相似?如存在,请求出m的值;若不存在,请说明理由.
如图,AB为⊙O直径,C.D为⊙O上的点,CD=CA,CE⊥DB交DB的延长线于点E.(1)判断直线CE与⊙O的位置关系,并说明理由;(2)若AC=4,AB=5,求CE的长.
某商店经销甲、乙两种商品.现有如下信息: 请根据以上信息,解答下列问题: (1)甲、乙两种商品的零售单价分别为 元和 元.(直接写出答案) (2)该商店平均每天卖出甲商品500件和乙商品1200件.经调查发现,甲种商品零售单价每降0.1元,甲种商品每天可多销售100件.为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降m(m>0)元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润共1700元?
我们在学习三角形相似时,往往是添加平行线构造相似三角形的基本图形.有一学生根据这一理论猜想三角形内角平分线有这样一个性质:如图,在△ABC中,AD平分∠BAC,则.如果你认为这个猜想是正确的,请写出一个完整的推理过程.