如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C(1)求抛物线的函数解析式.(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线,其中(m)是球的飞行高度,(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请求出球飞行的最大水平距离.(2)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.
(5分)抛物线的顶点坐标为(1,-4),图象又经过点(2,-3). 求(1)抛物线的解析式.(2)求抛物线与一次函数y=3x+11的交点坐标.(3)求不等式>3x+11的解集(直接写出答案).
如图,在△中,∠=90°,sin=,=15,求△的周长和tanB的值.
(本题满分12分)在平面直角坐标系中,抛物线交轴于两点,交轴于点,已知抛物线的对称轴为.
⑴求这个抛物线的解析式;⑵在抛物线的对称轴上是否存在一点,使点到A、C两点间的距离之和最大.若存在,求出点的坐标;若不存在,请说明理由.(3)如果在轴上方平行于轴的一条直线交抛物线于两点,以为直径作圆恰好与轴相切,求此圆的直径.
(本题满分12分)正方形边长为4,、分别是、上的两个动点,当点在上运动时,保持和垂直,⑴证明:;⑵设,梯形的面积为,求与之间的函数关系式;⑶梯形的面积可能等于12吗?为什么?