如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点80米处有一所学校A.当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若一直重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.
如图,△ABC中,∠A=90º,∠ABC与∠ACB的角平分线交于点I,△ABC的外角∠DBC与∠BCE的角平分线交于P. (1)则∠BIC= ,∠P= (直接写出答案); (2)若∠A的度数为xº时,求∠BIC,∠P的度数.
如图,△ABC中,∠B=,∠C=,AE是△ABC的角平分线,AD是BC上的高.求∠EAD的度数.
△ABC在方格纸中的位置如图所示,点A的坐标为(1,4). (1)分别写出B,C的坐标; (2)把△ABC向下平移1个单位后,再向右平移2个单位,请你画出平移后的△A1B1C1,并写出△A1B1C1各顶点的坐标.
如图,BC⊥ED,垂足为O,∠A=27°,∠D=20°,求∠ACB与∠B的度数.
如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,求证DF∥AC. 证明:∵∠1=∠2(已知) ∠2=∠3,∠1="∠4" () ∴∠3=∠4(等量代换) ∴_____∥_____ ( ) ∴∠C=∠ABD ( ) ∵∠C=∠D (已知 ) ∴∠D=∠ABD (等量代换 ) ∴DF∥AC