(本题7分)图1,图2是两两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.(1)在图1中画出等腰直角三角形MON,使点N在格点上,且∠MON=900;(2)在图2中以格点为顶点画出一个正方形ABCD,使正方形ABCD面积等于(1)中等腰直角三角形MON面积的4倍,并将正方形ABCD分割成以格点为顶点的四个全等的直角三角和一个正方形,且正方形ABCD面积没有剩余(画出一种即可).
某校举行了自贡市创建全国文明城市知识竞赛活动,初一年级全体同学参加了知识竞赛.
收集教据:现随机抽取了初一年级30名同学的“创文知识竞赛”成绩,分数如下(单位:分)
90 85 68 92 81 84 95 93 87 89 78 99 89 85 97
88 81 95 86 98 95 93 89 86 84 87 79 85 89 82
整理分析数据:
成绩(单位:分)
频数(人数)
1
2
17
(1)请将图表中空缺的部分补充完整;
(2)学校决定表彰“创文知识竞赛”成绩在90分及其以上的同学.根据上面统计结果估计该校初一年级360人中,约有多少人将获得表彰;
(3)“创文知识竞赛”中,受到表彰的小红同学得到了印有龚扇、剪纸、彩灯、恐龙图案的四枚纪念章,她从中选取两枚送给弟弟,则小红送给弟弟的两枚纪念章中,恰好有恐龙图案的概率是 .
如图,中,弦与相交于点,,连接、.
求证:(1);
(2).
解方程:.
计算:
如图,抛物线过点,且与直线交于、两点,点的坐标为.
(1)求抛物线的解析式;
(2)点为抛物线上位于直线上方的一点,过点作轴交直线于点,点为对称轴上一动点,当线段的长度最大时,求的最小值;
(3)设点为抛物线的顶点,在轴上是否存在点,使?若存在,求点的坐标;若不存在,请说明理由.