某景点的门票价格如表:
某校七年级(1)、(2)两班计划去游览该景点,其中(1)班人数少于50人,(2)班人数多于50人且少于100人,如果两班都以班为单位单独购票,则一共支付1118元;如果两班联合起来作为一个团体购票,则只需花费816元.(1)两个班各有多少名学生?(2)团体购票与单独购票相比较,两个班各节约了多少钱?
(本题满分10分)解方程:.
解不等式组:把它的解集在数轴上表示出来,并求它的整数解.
(本题满分14分,第(1)题4分,第(2)题4分,第(2)题6分) 在梯形ABCD中,AD//BC,AB⊥AD,AB=4,AD=5,CD=5.E为底边BC上一点,以点E为圆心,BE为半径画⊙E交直线DE于点F. (1)如图,当点F在线段DE上时,设BE,DF,试建立关于的函数关系式, 并写出自变量的取值范围; (2)当以CD直径的⊙O与⊙E与相切时,求的值; (3)联接AF、BF,当△ABF是以AF为腰的等腰三角形时,求的值。
(本题满分12分,第(1)、(2)题各6分) 如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C, D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3∶2. (1)求直线AD和抛物线的解析式; (2)抛物线的对称轴与轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出点Q点的坐标.
(本题满分12分,第(1)题7分,第(2)题5分) 如图,在⊙O中,直径AB与弦CD垂直,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线FC与直线AB相交于点G. (1)证明:直线FC与⊙O相切; (2)若,求证:四边形OCBD是菱形.