(本题10分)如图,在⊙O中,AB为直径,AC为弦,过点C作CD⊥AB于点D,将△ACD沿AC翻折,点D落在点E处,AE交⊙O于点F ,连接OC、FC.(1)求证:CE是⊙O的切线.(2)若FC∥AB,求证:四边形 AOCF是菱形.
如图,在△ABC中,∠ABC=90°,D是边AC上的一点,连接BD,使∠A=2∠1,E是BC上的一点,以BE为直径的⊙O经过点D.(1)求证:AC是⊙O的切线;(2)若∠A=60°,⊙O的半径为2,求阴影部分的面积.(结果保留根号和π)
某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.(1)用含x的代数式表示第3年的可变成本为 万元.(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率
如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC绕着点B逆时针旋转90°,得到△A1BC1,请画出△A1BC1;求点A旋转过程中所经过的路径长。(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相似比不为1.
某公司欲招聘业务员一名,现对A、B、C三名候选人分别进行笔试、面试测试,成绩如下表:
(1)如果按照三人测试成绩的平均成绩录取人选,那么谁将被录用?(2)根据实际需要,公司想将丙录用,请兼顾笔试、面试两个方面,你确定的方案是什么?写出理由.
(1)解方程;(2) .