(本题3+3+4+4分)如图,在平面直角坐标系中,抛物线经过点A(,0)和点B(1,),与x轴的另一个交点为C,(1)求抛物线的表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上,且,求点D的坐标;(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE①判断四边形OAEB的形状,并说明理由;②点F是OB的中点,点M是直线BD上的一个动点,且点M与点B不重合,当,请直接写出线段BM的长。
定义:如果一元二次方程 a x 2 + bx + c = 0 ( a ≠ 0 ) 满足 a + b + c = 0 ,那么我们称这个方程为“凤凰方程”,已知 a x 2 + bx + c = 0 ( a ≠ 0 ) 是“凤凰方程”,且有两个相等的实数根,求 a , b , c 之间的关系.
已知关于 x 的一元二次方程 x 2 - ( 2 k + 1 ) x + k 2 + k = 0 .
(1)求证:无论 k 取何值,方程都有两个不相等的实数根.
(2)如果方程的两个实数根为 x 1 , x 2 ,且 k 与 x 1 x 2 都为整数,求 k 所有可能的值.
设 m 是不小于 - 1 的实数,关于 x 的方程 x 2 + 2 ( m - 2 ) x + m 2 - 3 m + 3 = 0 有两个不相等的实数根 x 1 , x 2 .
(1)若 x 1 2 + x 2 2 = 6 ,求 m 的值;
(2)求 m x 1 2 1 - x 1 + m x 2 2 1 - x 2 的最大值.
已知关于 x 的方程 x 2 - ( 2 k - 1 ) x + k 2 = 0 有两个实根 x 1 , x 2 ,且满足 x 1 x 2 - x 1 - x 2 = 2 ,求实数 k 的值;
如图,在 ▱ A B C D 中, P 是线段 B C 中点,联结 B D 交 A P 于点 E ,联结 C E .
(1)如果 A E = C E .
ⅰ.求证: ▱ A B C D 为菱形;
ⅱ.若 A B = 5 , C E = 3 ,求线段 B D 的长;
(2)分别以 A E , B E 为半径,点 A , B 为圆心作圆,两圆交于点 E , F ,点 F 恰好在射线 C E 上,如果 C E = 2 A E ,求 AB BC 的值.