如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△C;平移△ABC,若A的对应点的坐标为(0,4),画出平移后对应的△;(2)若将△C绕某一点旋转可以得到△,请直接写出旋转中心的坐标;(3)在轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.
如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题: (1)△ABC的面积为 (2)画出格点△ABC(顶点均在格点上)关于x轴对称的△ (3)指出△的顶点坐标.(, ), (,), (,) (4)在y轴上画出点Q,使最小。
已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF.
如图1,A、B两点同时从原点0出发,点A以每秒x个单位长度沿x轴的负方向运动,点B以每秒y个单位长度沿y轴的正方向运动. (1)若,试分别求1秒后A、B两点的坐标. (2)如图2,AP、BP分别是∠BAC和∠DBA的平分线,试问:点A、B在运动过程中,∠P的大小是否会发生变化?若不变化,请求出其值;若发生变化,请说明理由. (3)如图3,延长BA至点E,在∠ABO的内部做射线BF交x轴于点C.若∠EAC、∠FCA和∠ABC的平分线相交于点G,过点G作GH⊥BE于点H,试问∠AGH与∠BGC有何数量关系?请写出你的结论并说明理由.
(1)如图,已知∠AOB,请你利用图①,用尺规作出∠AOB的平分线0P,并画一对以OP所在直线为对称轴的全等三角形; (2)参考(1)中画全等三角形的方法,解答下列问题:如图②,在ABC中,∠ACB是直角,∠B =60°,AD、CE分别是∠BAC与∠BCA的平分 线,AD和CE相交于点F,请猜想FE与FD有怎样的数量关系,并加以说明.
如图,∠ACB =90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.