(本题4+4分)已知关于的一元二次方程有两个不相等的实数根。(1)求的取值范围;(2)若为正整数,且该方程的根都是整数,求的值。
解方程组.
如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合). (1)求抛物线的解析式; (2)求△ABC的面积; (3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.
如图,AC是⊙O的直径,P是⊙O外一点,连结PC交⊙O于B,连结PA、AB,且满足PC=50,PA=30,PB=18. (1)求证:△PAB∽△PCA; (2)求证:AP是⊙O的切线.
铜仁市某电解金属锰厂从今年1月起安装使用回收净化设备(安装时间不计),这样既改善了环境,又降低了原料成本,根据统计,在使用回收净化设备后的1至x月的利润的月平均值w(万元)满足w=10x+90. (1)设使用回收净化设备后的1至x月的利润和为y,请写出y与x的函数关系式. (2)请问前多少个月的利润和等于1620万元?
某中学组织部分优秀学生分别去北京、上海、天津、重庆四个城市进行夏令营活动,学校购买了前往四个城市的车票,如图是未制作完整的车票种类和数量的条形统计图,请你根据统计图回答下列问题: (1)若前往天津的车票占全部车票的30%,则前往天津的车票数是多少张?并请补全统计图. (2)若学校采取随机抽取的方式分发车票,每人抽取一张(所有的车票的形状、大小、质地完全相同),那么张明抽到前往上海的车票的概率是多少?