某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的莆田——我最喜爱的莆田美食”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“扁食”的同学有多少人;(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率。
计算: ( - 1 ) 2019 + ( - 1 2 ) - 2 +| 3 -2|+3tan30° .
如图,抛物线 y=a x 2 +bx+c 与 x 轴交于点 A(-1,0) ,点 B(-3,0) ,且 OB=OC .
(1)求抛物线的解析式;
(2)点 P 在抛物线上,且 ∠POB=∠ACB ,求点 P 的坐标;
(3)抛物线上两点 M , N ,点 M 的横坐标为 m ,点 N 的横坐标为 m+4 .点 D 是抛物线上 M , N 之间的动点,过点 D 作 y 轴的平行线交 MN 于点 E .
①求 DE 的最大值;
②点 D 关于点 E 的对称点为 F ,当 m 为何值时,四边形 MDNF 为矩形.
如图,在正方形 ABCD 中,点 E 是 AB 边上一点,以 DE 为边作正方形 DEFG , DF 与 BC 交于点 M ,延长 EM 交 GF 于点 H , EF 与 CB 交于点 N ,连接 CG .
(1)求证: CD⊥CG ;
(2)若 tan∠MEN= 1 3 ,求 MN EM 的值;
(3)已知正方形 ABCD 的边长为1,点 E 在运动过程中, EM 的长能否为 1 2 ?请说明理由.
在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.
(1)钢笔、笔记本的单价分别为多少元?
(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?
如图,在 ΔABC 中,以 AC 为直径的 ⊙O 交 AB 于点 D ,连接 CD , ∠BCD=∠A .
(1)求证: BC 是 ⊙O 的切线;
(2)若 BC=5 , BD=3 ,求点 O 到 CD 的距离.