(1)过点P(-1,-2)的直线分别交x轴和y轴的负半轴于A、B两点,当|PA|·|PB|最小时,求的方程.(2)已知定点与定直线,过 点的直线与交于第一象限点,与x轴正半轴交于点,求使面积最小的直线方程。
(本小题满分12分)去年2月29日,我国发布了新修订的《环境空气质量标准》指出空气质量指数在为优秀,各类人群可正常活动.惠州市环保局对我市2014年进行为期一年的空气质量监测,得到每天的空气质量指数,从中随机抽取50个作为样本进行分析报告,样本数据分组区间为,,,,由此得到样本的空气质量指数频率分布直方图,如图.(1)求a的值;(2)根据样本数据,试估计这一年度的空气质量指数的平均值;(3)如果空气质量指数不超过,就认定空气质量为“特优等级”,则从这一年的监测数据中随机抽取天的数值,其中达到“特优等级”的天数为,求的分布列和数学期望.
(本小题满分12分)如图是某几何体的直观图与三视图的侧视图、俯视图.在直观图中,2BN=AE,M是ND的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)在答题纸上的虚线框内画出该几何体的正视图,并标上数据;(2)求证:EM∥平面ABC;(3)试问在边BC上是否存在点G,使GN⊥平面NED.若存在,确定点G的位置;若不存在,请说明理由.
(本小题满分12分)如图所示,程序框图给出了无穷正项数列{an}满足的条件,且当时,输出的是; 当时,输出的是.(1)试求数列{an}的通项公式;(2)试求当k=10时,输出的T的值.(写出必要的解题步骤)
已知等差数列的前项和为,若,.(Ⅰ)求数列的通项公式;(Ⅱ)对任意的,将数列中落入区间内的项的个数记为.①求数列的通项公式;②记,数列前项的和为,求出所有使得等式成立的正整数,.
已知直线经过椭圆()的左顶点和上顶点.椭圆的右顶点为,点是椭圆上位于轴上方的动点,直线、与直线分别交于、两点.(Ⅰ)求椭圆的标准方程;(Ⅱ)求线段长度的最小值;(Ⅲ)当线段的长度最小时,椭圆上是否存在这样的点,使得的面积为?若存在,确定点的个数;若不存在,请说明理由.