如图,在平面直角坐标系中,已知抛物线经过,两点,顶点为.(1)求、的值;(2)将绕点顺时针旋转90°后,点A落到点C的位置,该抛物线沿轴上下平移后经过点,求平移后所得抛物线的表达式;(3)设(2)中平移后所得的抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足△的面积是△面积的3倍,求点的坐标.
某工厂计划在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件. (1)求原计划每天生产的零件个数和规定的天数. (2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.
为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整): 某校被调查学生选择社团意向统计表
根据统计图表中的信息,解答下列问题: (1)求本次调查的学生总人数及a,b,c的值. (2)将条形统计图补充完整(温馨提示:请画在答题卷相对应的图上). (3)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数.
如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连结DE. (1)若AD=DB,OC=5,求切线AC的长. (2)求证:ED是⊙O的切线.
已知y是x的一次函数,当x=3时,y=1;当x=−2时,y=−4,求这个一次函数的解析式.
解不等式组