如图,AB是CD的垂直平分线,交CD于点M,过点M作ME⊥AC,MF⊥AD,垂足分别为E、F.(1)求证: ∠CAB=∠DAB;(2)若∠CAD=90°,求证:四边形AEMF是正方形.
如图,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分线AE 交BC于E, EC=AB, F、G分别是AB、AD的中点.求证:(1)△AGE≌AFE;(2)EF=CD.
解方程或不等式组(每小题4分,共8分)(1) (2)
如图,为直角三角形,,,;四边形 为矩形,,,且点、、、在同一条直线上,点与点重合.(1)求边的长;(2)将以每秒的速度沿矩形的边向右平移,当点与点 重合时停止移动,设与矩形重叠部分的面积为,请求出重叠部分的面积()与移动时间的函数关系式(时间不包含起始与终止时刻);(3)在(2)的基础上,当移动至重叠部分的面积为时,将沿边向上翻折,得到,请求出与矩形重叠部分的周长(可利用备用图).
有一座抛物线型拱桥,其水面宽为18米,拱顶离水面的距离为8米,货船在水面上的部分的横断面是矩形,如图建立平面直角坐标系.(1)求此抛物线的解析式,并写出自变量的取值范围;(2)如果限定的长为9米,的长不能超过多少米,才能使船通过拱桥?(3)若设,请将矩形的面积用含的代数式表示,并指出的取值范围.
一次函数的图象经过点,且分别与轴、轴交于点、.点在轴正半轴上运动,点在轴正半轴上运动,且.(1)求的值,并在给出的平面直角坐标系中画出该一次函数的图象;(2)求与满足的等量关系式.