如图,AB是CD的垂直平分线,交CD于点M,过点M作ME⊥AC,MF⊥AD,垂足分别为E、F.(1)求证: ∠CAB=∠DAB;(2)若∠CAD=90°,求证:四边形AEMF是正方形.
如图,在平面直角坐标系中,抛物线 C : y = a x 2 + bx + c ( a ≠ 0 ) 经过点 ( 1 , 1 ) 和 ( 4 , 1 ) .
(1)求抛物线 C 的对称轴.
(2)当 a = - 1 时,将抛物线 C 向左平移2个单位,再向下平移1个单位,得到抛物线 C 1 .
①求抛物线 C 1 的解析式.
②设抛物线 C 1 与 x 轴交于 A , B 两点(点 A 在点 B 的右侧),与 y 轴交于点 C ,连接 BC .点 D 为第一象限内抛物线 C 1 上一动点,过点 D 作 DE ⊥ OA 于点 E .设点 D 的横坐标为 m .是否存在点 D ,使得以点 O , D , E 为顶点的三角形与 ΔBOC 相似,若存在,求出 m 的值;若不存在,请说明理由.
某种冰激凌的外包装可以视为圆锥,它的底面圆直径 ED 与母线 AD 长之比为 1 : 2 .制作这种外包装需要用如图所示的等腰三角形材料,其中 AB = AC , AD ⊥ BC .将扇形 AEF 围成圆锥时, AE , AF 恰好重合.
(1)求这种加工材料的顶角 ∠ BAC 的大小.
(2)若圆锥底面圆的直径 ED 为 5 cm ,求加工材料剩余部分(图中阴影部分)的面积.(结果保留 π )
为落实湖南省共青团“青年大学习”的号召,某校团委针对该校学生每周参加“青年大学习”的时间(单位: h ) 进行了随机抽样调查,并将获得的数据绘制成如下统计表和如图所示的统计图,请根据图表中的信息回答下列问题.
周学习时间
频数
频率
0 ⩽ t < 1
5
0.05
1 ⩽ t < 2
20
0.20
2 ⩽ t < 3
a
0.35
3 ⩽ t < 4
25
m
4 ⩽ t ⩽ 5
15
0.15
(1)求统计表中 a , m 的值.
(2)甲同学说“我的周学习时间是此次抽样调查所得数据的中位数”.求甲同学的周学习时间在哪个范围内.
(3)已知该校学生约有2000人,试估计该校学生每周参加“青年大学习”的时间不少于 3 h 的人数.
为庆祝中国共产党成立100周年,某校计划举行“学党史 ⋅ 感党恩”知识竞答活动,并计划购置篮球、钢笔、笔记本作为奖品.采购员刘老师在某文体用品店购买了做为奖品的三种物品,回到学校后发现发票被弄花了,有几个数据变得不清楚,如图.
请根据图所示的发票中的信息,帮助刘老师复原弄花的数据,即分别求出购置钢笔、笔记本的数量及对应的金额.
如图,在正方形 ABCD 中,对角线 AC , BD 相交于点 O ,点 E , F 是对角线 AC 上的两点,且 AE = CF .连接 DE , DF , BE , BF .
(1)证明: ΔADE ≅ ΔCBF .
(2)若 AB = 4 2 , AE = 2 ,求四边形 BEDF 的周长.