已知直线,(1)若直线过点(3,2)且,求直线的方程;(2)若直线过与直线的交点,且,求直线的方程.
已知不论取何实数,直线与双曲线总有公共点,试求实数的取值范围.
(本小题满分12分)已知函数。 (I)求函数的单调区间;(II)函数的图象的在处切线的斜率为若函数在区间(1,3)上不是单调函数,求m的取值范围。
(本小题满分13分) 在数列(I)求证:数列为等差数列;(II)若m为正整数,当
(本小题满分13分)已知过点(1,0)的直线相交于P、Q两点,PQ中点坐标为(O为坐标原点)。(I)求直线的方程;(II)证明:为定值。
(本上题满分12分)某高校为了参加“CBA杯”安徽省大学生篮球联赛暨第十届CU—BA安徽省选拔赛,需要在各班选拔预备队员,规定投篮成绩甲级的可作为入围选手,选拔过程中每人投篮5次,若投中3次则确定为乙级,若投中4次及以上则可确定为甲级,一旦投中4次,即终止投篮,已知某班同学小明每次投篮投中的概率是0.6。(I)求小明投篮4次才被确定为乙级的概率; (II)设小明投篮投中次数为X,求X的分布列及期望。