已知椭圆的中心在原点,准线方程为x=±4,如果直线:3x-2y=0与椭圆的交点在x轴上的射影恰为椭圆的焦点. (1)求椭圆方程;(2)设直线与椭圆的一个交点为P,F是椭圆的一个焦点,试探究以PF为直径的圆与椭圆长轴为直径的圆的位置关系; (3)把(2)的情况作一推广:写出命题(不要求证明)
有一座大桥既是交通拥挤地段,又是事故多发地段,为了保证安全,交通部门规定。大桥上的车距d(m)与车速v(km/h)和车长l(m)的关系满足:(k为正的常数),假定车身长为4m,当车速为60(km/h)时,车距为2.66个车身长。 (1)写出车距d关于车速v的函数关系式; (2)应规定怎样的车速,才能使大桥上每小时通过的车辆最多?
设函数,已知是奇函数。 (1)求、的值. (2)求的单调区间与极值.
已知定义在R上的函数,其中a为常数. (1)若x=1是函数的一个极值点,求a的值; (2)若函数在区间(-1,0)上是增函数,求a的取值范围; (3)若函数,在x=0处取得最大值,求正数a的取值范围.
设数列满足其中为实数,且 (Ⅰ)求数列的通项公式 (Ⅱ)设,,求数列的前项和; (Ⅲ)若对任意成立,证明
已知3台机器位于直线l上,机器所在的位置如下图所示,其中 M1 M2 ="10m," M2 M3 =20m;现要放置一台检验台P,用函数方法确定放在哪里可使检验台P到3台机器的距离和最小?
X