徐州、苏州两地相距500千米,一辆货车从徐州匀速行驶到苏州,规定速度不得超过100千米/小时.已知货车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/时)的平方成正比,比例系数为0.01;固定部分为a元(a>0) (1)把全程运输成本y(元)表示为速度v(千米/时)的函数,并指出这个函数的定义域;(2)为了使全程运输成本最小,汽车应以多大速度行驶?
在△ABC中,角A、B、C的对边分别为a、b、c,若(1)判断△ABC的形状(2)若,求的值
(本小题满分14分)数列的前n项和为(I)求的通项公式;(II)求证:
(本小题共12分)已知函数的导函数为,且不等式的解集为(I)若函数的极大值为0,求实数a的值;(II)当x满足不等式时,关于x的方程有唯一实数解,求实数m的取值范围。
(本小题共12分)已知双曲线过点A(2,3),其一条渐近线的方程为(I)求该双曲线的方程;(II)若过点A的直线与双曲线右支交于另一点B,的面积为,其中O为坐标原点,求直线AB的方程。
(本小题共12分)在直三棱柱ABC—A1B1C1中,AA1=1,AB=2,AC=1,,D为BC的中点。(I)求证:平面ACC1A1⊥平面BCC1B;(II)求直线DA1与平面BCC1B1所成角的大小;(III)求二面角A—DC1—C的大小。