在非等腰△ABC中,a,b,c分别是三个内角A,B,C的对边,且a=3,c=4,C=2A.(Ⅰ)求cosA及b的值;(Ⅱ)求cos(–2A)的值.
(本大题满分12分)从某学校的名男生中随机抽取名测量身高,被测学生身高全部介于和之间,将测量结果按如下方式分成八组:第一组,第二组,第八组,下图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为人. (Ⅰ)求第七组的频率; (Ⅱ)估计该校的名男生的身高的中位数以及身高在以上(含)的人数; (Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,事件,事件,求
(本大题满分12分)四棱锥中,⊥底面,,,. (Ⅰ)求证:⊥平面; (Ⅱ)若侧棱上的点满足,求三棱锥的体积.
(本大题满分12分)在中,角为锐角,已知内角、、所对的边分别为、、,向量且向量共线. (1)求角的大小; (2)如果,且,求的值.
已知函数,其中. (1)当a=3,b=-1时,求函数的最小值; (2)当a>0,且a为常数时,若函数对任意的,总有成立,试用a表示出b的取值范围.
已知抛物线,准线与轴的交点为. (Ⅰ)求抛物线的方程; (Ⅱ)如图,,过点的直线与抛物线交于不同的两点,AQ与BQ分别与抛物线交于点 C,D,设AB,DC的斜率分别为,的斜率分别为,问:是否存在常数,使得, 若存在,求出的值,若不存在,说明理由.