如图,是抛物线上的两动点(异于原点),且的角平分线垂直于轴,直线与轴,轴分别相交于.(1) 求实数的值,使得;(2)若中心在原点,焦点在轴上的椭圆经过. 求椭圆焦距的最大值及此时的方程.
(本小题满分15分)如图所示,正方形与直角梯形所在平面互相垂直,,,.(1)求证:平面;(2)求证:平面;(3)求四面体的体积.
在中,角的对边分别为,已知.(Ⅰ)求角的大小;(Ⅱ)若,求△的面积.
已知函数,若在定义域内存在,使得成立,则称为函数的局部对称点.(1)若、R且,证明:函数必有局部对称点;(2)若函数在区间内有局部对称点,求实数的取值范围;(3)若函数在R上有局部对称点,求实数的取值范围.
已知抛物线()的准线与轴交于点.(1)求抛物线的方程,并写出焦点坐标;(2)是否存在过焦点的直线(直线与抛物线交于点,),使得三角形的面积?若存在,请求出直线的方程;若不存在,请说明理由.
如图,在矩形中,点为边上的点,点为边的中点, ,现将沿边折至位置,且平面平面. (Ⅰ)求证:平面平面; (Ⅱ)求四棱锥的体积.