(本小题满分13分)如图,是圆的直径,是圆上异于的一个动点,垂直于圆所在的平面,DC∥EB,.(1)求证:;(2)当三棱锥C-ADE体积最大时,求平面AED与平面ABE所成的锐二面角的余弦值.
(本小题满分12分) 如图,在四棱锥S - ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA ="AB=BC" =2,AD =1.M是棱SB的中点. (Ⅰ)求证:AM∥面SCD; (Ⅱ)求面SCD与面SAB所成二面角的余弦值; (Ⅲ)设点N是直线CD上的动点,MN与面SAB所成的角为,求sin的最大值,
(本小题满分12分) 已知数列{ an}的前n项和为Sn,且Sn=2an-l;数列{bn}满足bn-1=bn=bnbn-1(n≥2,n∈N*)b1=1. (Ⅰ)求数列{an},{bn}的通项公式; (Ⅱ)求数列的前n项和T.
(本小题满分12分) 某市一次全市高中男生身高统计调查数据显示:全市100 000名男生的身高服从正态分布N(168,16).现从某学校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于160 cm和184 cm之间,将测量结果按如下方式分成6组:第一组 [160,164],第二组[164,168],…,第6组[180,184],下图是按上述分组方法得到的频率分布直方图. (Ⅰ)试评估该校高三年级男生在全市高中男生中的平均身高状况; (Ⅱ)求这50名男生身高在172 cm以上(含172 cm)的人数; (Ⅲ)在这50名男生身高在172 cm以上(含172 cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全市前130名的人数记为,求的数学期望. 参考数据: 若.则=0.6826,="0.9544," =0.9974.
(本小题满分12分) 已知函数f(x)=" cos(" 2x+)+sin2x. (Ⅰ)求函数f(x)的最小正周期和值域; (Ⅱ)在△ABC中,角A、B、C的对边分别为a、b、c,满足 2·=, 求△ABC的面积S.
已知函数,若对R 恒成立,求实数的取值范围.