已知关于x的一元二次方程有两个不相等的实数根,k为正整数.(1)求k的值;(2)当次方程有一根为零时,直线与关于x的二次函数的图象交于A、B两点,若M是线段AB上的一个动点,过点M作MN⊥x轴,交二次函数的图象于点N,求线段MN的最大值及此时点M的坐标;(3)将(2)中的二次函数图象x轴下方的部分沿x轴翻折到x轴上方,图象的其余部分保持不变,翻折后的图象与原图象x轴上方的部分组成一个“W”形状的新图象,若直线与该新图象恰好有三个公共点,求b的值.
某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价为1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
已知二次函数y= -2x2+8x-6,完成下列各题: (1)将函数关系式用配方法化为的形式,并写出它的顶点坐标、对称轴. (2)它的图像与x轴交于A,B两点,顶点为C,求S△ABC.
如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用22m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.
解方程: (1) (2)
已知抛物线y="Ax" 2 +Bx+C与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点. (1)求此抛物线的解析式; (2)若点D为线段OA的一个三等分点,求直线DC的解析式; (3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A.求使点P运动的总路径最短的点E、点F的坐标,并求出这个最短总路径的长. (4)若点N的坐标为(3,4),Q为x轴上一点,△ONQ为等腰三角形,请直接写出点Q的坐标。