(选修4-4;坐标系与参数方程)已知直线经过点P(1,1),倾斜角,(1)写出直线的参数方程;(2)设与圆相交与两点A、B,求点P到A、B两点的距离之积.
设△ABC的内角A、B、C所对的边长分别为a、b、c,且(1)求角A的大小;(2)若角边上的中线AM的长为,求△ABC的面积.
已知函数(1)若,求曲线在处的切线方程;(2)求的单调区间;(3)设,若对任意,均存在,使得,求的取值范围.
已知椭圆的左右顶点分别为,离心率.(1)求椭圆的方程;(2)若点为曲线:上任一点(点不同于),直线与直线交于点,为线段的中点,试判断直线与曲线的位置关系,并证明你的结论.
已知正项数列中,,前n项和为,当时,有.(1)求数列的通项公式;(2)记是数列的前项和,若的等比中项,求.
如图1,在直角梯形中,,,且.现以为一边向梯形外作正方形,然后沿边将正方形翻折,使平面与平面垂直,为的中点,如图2.(1)求证:∥平面;(2)求证:;(3)求点到平面的距离.